CURING TRADITIONAL FORMULATIONS WITH MULTI-WAVELENGTH LEDS

RadTech 2018 (Chicago, IL) | 9 May 2018, B. Skinner

AGENDA

- Overview
 - Status of UV LED technology
 - Basis of current research

• Experimental setup

- Clear coat chemistries
- Irradiators- Irradiance profiles and spectra
- Drawdown and physical tests to judge "cure"
- Results
 - Marginal success point (MSP) for each formulation- LED vs. µwave
 - Order of wavelengths, gloss or matte finish
- Conclusions
- Questions

OVERVIEW

- UV Curing has been used for many diverse applications
- Until recently, Hg based UV lamps have primarily been utilized
- Key Advantages of Hg-based lamps:
 - Mature technology
 - Fast process speed (higher UV output)
 - Low cost of ownership

• Drawbacks

- High electrical power consumption
- Requires large blowers
- Ozone formation
- Presence of Hg

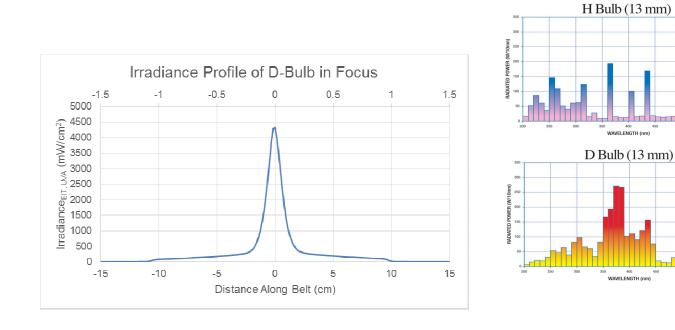
OVERVIEW- STATUS OF UV LED TECHNOLOGY

- White light LED manufacturing technology has made steady progress over the past decade
- Associated manufacturing technology for UV LEDs have benefited
- Some key benefits of LED technology are:
 - Instant on-off
 - Hg free
 - Longer life
 - Possible lower cost of ownership
- UV LEDs have shown significant potential for UV-curing applications
- Until now, mostly UVA LEDs have been used for some curing applications
- Recent emergence of UVC LEDs are expected to bring further innovation

OVERVIEW- BASIS OF CURRENT RESEARCH

- Most existing formulations are optimized for broadband illumination (for Hg-based lamps)
- Reluctance by some formulators to reformulate for LED and by end-users to qualify a new potentially more expensive formulation
- We will look at the feasibility of curing traditional formulations with multiwavelength LED lamps

EXPERIMENTAL SETUP- CLEAR COAT CHEMISTRIES


- 4 custom formulations with common commercial monomers, oligomers, and photoinitiators
- White Leneta paper and 14 microns DFT for all tests

Formulations, Weight (%)										
Mate	erial	1	2	3	3B					
EBECR	YL 3700	40								
EBECR	YL 5781			75	75					
EBECR	YL 221		45							
EBEC	RYL 85	45	40							
EBECR	YL P115	10	10							
EBECRYL LED 02				20	20					
PI: TPO		2.5	2.5	2.5						
PI:	PI: Irg 184		2.5	2.5	5					
		100	100	100	100					

Herae

EXPERIMENTAL SETUP- IRRADIATORS I

- Heraeus F300, Microwave-Powered Irradiator, 300W/in, 6-inch bulb
 - Broadband, H and D-bulb ۲
 - In focus (2.1in on 53mm), standard bulb position, R500 reflector, perpendicular ۲

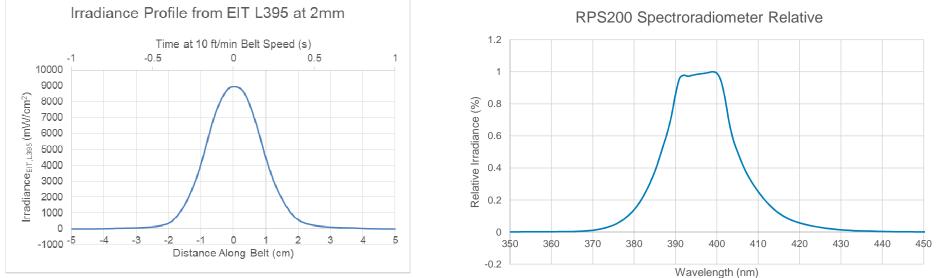
500

450

400 450 WAVELENGTH (nm)

350 400

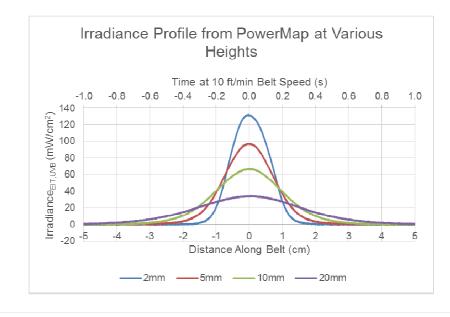
WAVELENGTH (nm)

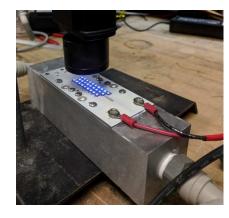

5/9/2018 Curing Traditional Formulations with Multi-Wavelength LEDs | B. Skinner | HNA-Innovation 7

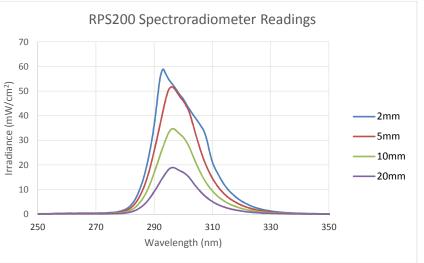
EXPERIMENTAL SETUP- IRRADIATORS II

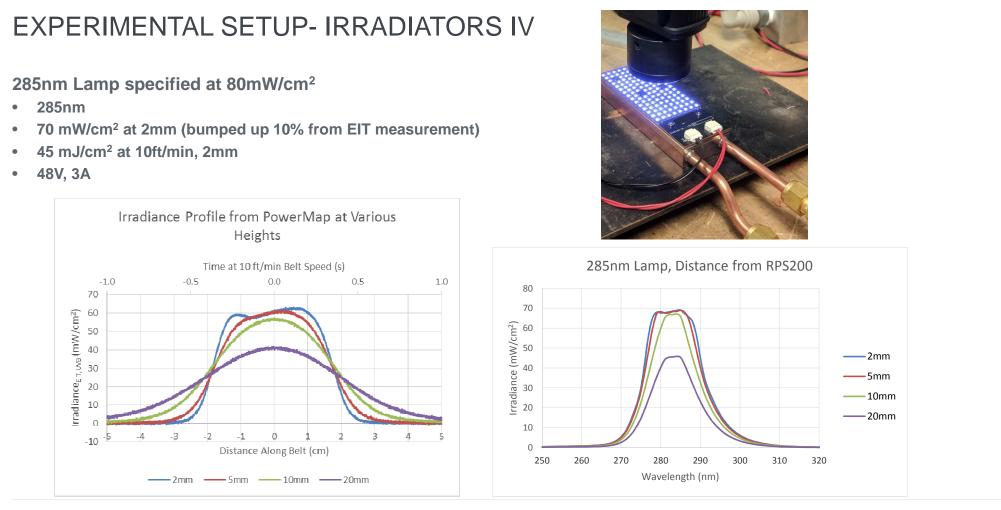
Semray 395nm Lamp System

- 14 W/cm² at the glass with NobleProbe
- 8900 mW/cm² at 2mm with EIT LEDCURE L395
- 1830 mJ/cm² at 20 ft/min

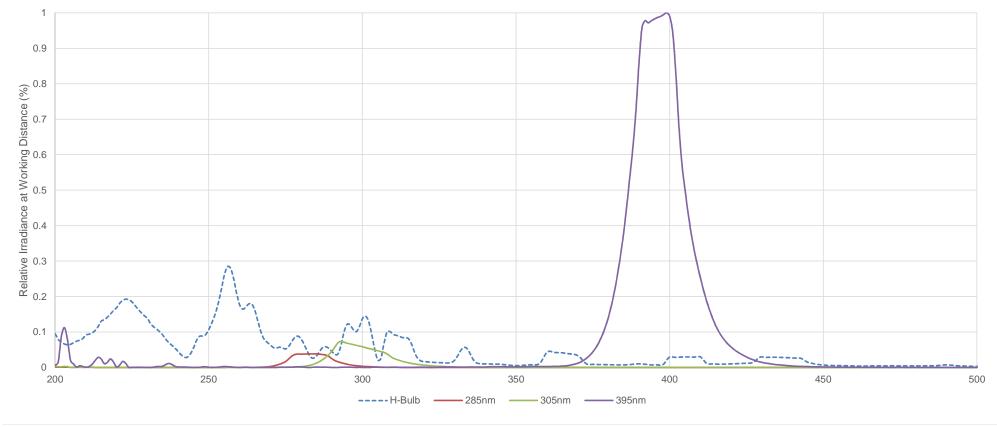





EXPERIMENTAL SETUP- IRRADIATORS III


Custom-built LED array

- 305nm, 30mW chips
- 130 mW/cm² Peak Irradiance UVBEIT at 2mm
- 36 mJ/cm² at 10 ft/min, 2mm
- 6V, 9.6A



EXPERIMENTAL SETUP- IRRADIATORS V

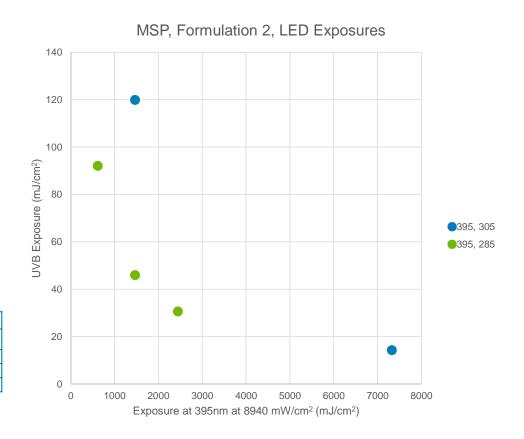
Spectra Comparisons Between Microwave and LED, Rough Graphic

11 5/9/2018 Curing Traditional Formulations with Multi-Wavelength LEDs | B. Skinner | HNA-Innovation

DRAWDOWN AND PHYSICAL TESTS TO JUDGE "CURE"

- Drawdown rod to apply 14 micron film to white Leneta cards
- Find Marginal Success Point (MSP)- lowest exposure where all physical tests pass
 - Thumb twist to test "bulk cure" or "through cure"
 - Scratch test for scratch resistance with tongue depressor
 - Planned to use tack but all coatings felt tacky even when cured
- No FTIR

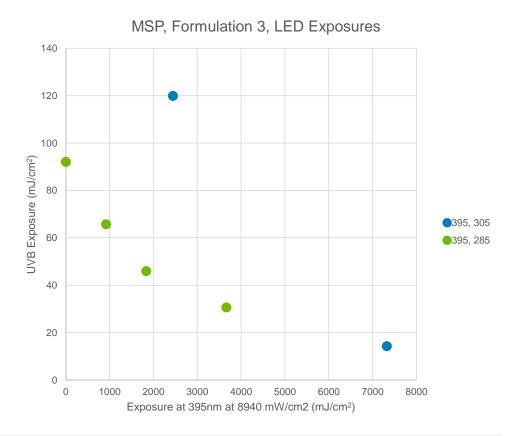
RESULTS- FORMULATION 1 MSP


- 395/285 was able to cure the coating with significantly more UVA energy but comparable UVB to µwave
- Under 395/305, coating failed 'through cure' and scratch test at slowest speeds allowable
- Slower speeds under 395nm Semray burned and damaged the coating, and 3 ft/min was the conveyor's lower limit
- 395/285 could cure the coating even at lower UVB peak irradiance and exposure than 395/305

MSP, Formulation 1										
Exposure	Belt Speed (ft/min)	Ex	posure	e (mJ/cı	m²)	Peak I	Irradiance (mW/cm²)			
		UVC	UVB	UVA	UVV	UVC	UVB	UVA	UVV	
F300-H	260	7	36	32	45	438	2103	1901	2542	
F300-D	160	8	48	127	144	293	1665	4325	4817	
395, 305	10, 3		120	3660			132	8940		
395, 285	10, 10		46	3660			69	8940		

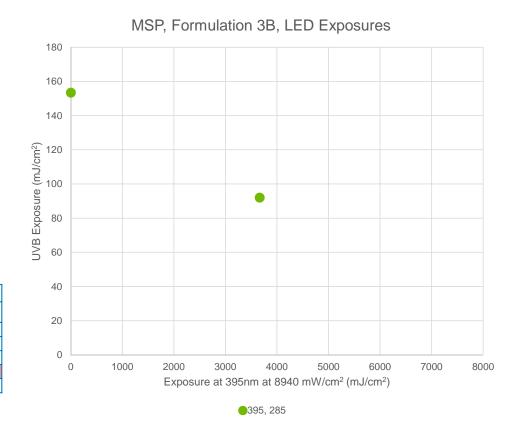
RESULTS, FORMULATION 2 MSP

- Both LED exposures achieved cure at different levels of UVB and UVA exposure
- Lower exposure possible with 305nm, but for this much more 395nm energy is needed
- The coating is less sensitive to changes in exposure with 285nm compared to 305nm
- Flexibility in equipment selection

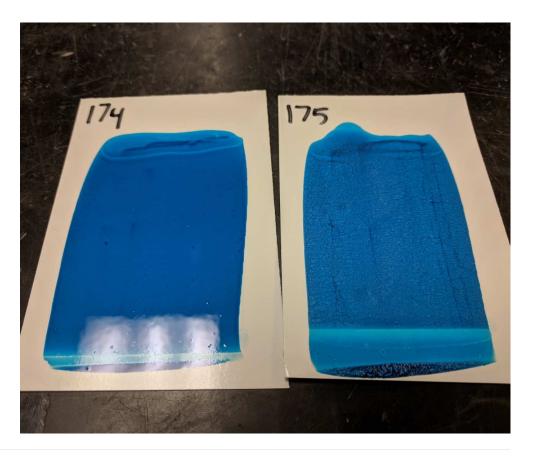

MSP, Formulation 2, Microwave-Powered Lamp (300W/in)										
Exposure	Belt Speed	Exposure (mJ/cm ²)				Peak Irradiance (mW/cm ²)				
	(ft/min)	UVC	UVB	UVA	UVV	UVC	UVB	UVA	UVV	
F300-H	260	7	36	32	45	438	2103	1901	2542	
F300-D	220	6	35	92	105	293	1665	4325	4817	

RESULTS- FORMULATION 3 MSP

- Both LED exposures achieved cure at different levels of UVB and UVA exposure
- Lower exposure possible with 305nm, but for this much more 395nm energy is needed
- The coating is less sensitive to changes in exposure with 285nm compared to 305nm
- Flexibility in equipment selection
- Cured with only 285nm but not with 395nm only


	MSP, Formulation 3, Microwave-Powered Lamp (300W/in)									
F	Exposure	Belt Speed	Exposure (mJ/cm ²)				Peak Irradiance (mW/cm ²)			
	Apooulo	(ft/min)	UVC	UVB	UVA	UVV	UVC	UVB	UVA UV	UVV
	F300-H	240	8	39	35	49	438	2103	1901	2542
	F300-D	200	6	38	101	115	293	1665	4325	4817

RESULTS, FORMULATION 3B (WITHOUT TPO)


- Under 395/305, coating failed 'through cure' and scratch test at slowest speeds allowable
- Coating could cure with just 285nm with enough energy
 - Adding UVA reduced the required UVB energy by 40%
- 50-60% more energy required under microwave lamp to cure vs. coating with TPO

MSP, Formulation 3B										
Exposure	Belt Speed	Ex	posure	(mJ/cr	Peak	rradiance (mW/cm²)				
	(ft/min)	UVC	UVB	UVA	UVV	UVC	UVB	UVA	UVV	
F300-H	160	12	59	53	73	438	2103	1901	2542	
F300-D	125	10	61	162	184	293	1665	4325	4817	
395, 305	5, 3		120	7320			132	8940		
395, 285	10, 5		92	3660			69	8940		

RESULTS- ORDER OF LED WAVELENGTHS

- Did not affect clear coats
 - 60° gloss under both conditions was 94.6 GU
- Affected cyan inkjet ink
 - Short wavelength first for matte (13.4 GU).
 - Physically rough surface
 - Long wavelength first for glossy (94.0 GU)
- 285nm and 395nm used here at 15 ft/min

CONCLUSIONS I

- In some situations, lower UVB wavelengths, even at lower peak irradiances and exposures, are more effective
- For LED, when decreasing exposure, scratch resistance fails before bulk cure fails; coating is still cured but not scratch resistant.
- For formulations 2 and 3, cure achieved at multiple levels of UVB and UVA exposure
 - Lower exposure possible with 395/305, but much more 395nm energy was needed
 - Less sensitive to changes in exposure with 285nm compared to 305nm

CONCLUSIONS II

- Formulation 3B (without TPO)- 285nm alone could cure it
 - Adding UVA reduced required UVB energy by 40%
 - 50-60% more energy required for microwave lamp exposure compared to Formulation 3 (with TPO)
- Short wavelength first had no effect on gloss for all clear coats, but did impact inkjet ink
- Long wavelength first reflected 7x more light at 60° angle than short wavelength first
- Time between exposures is critical
 - Sample at MSP with 10s between exposures would fail bulk cure and scratch test when time extended to 60s
 - Increasing both LED exposures by 20% enough to regain passing physical tests

CONCLUSIONS III

- 305nm and 285nm exposures had roughly same hardness (qualitative)
- A little UVC/UVB goes a long way (20-50 mJ/cm²) at 70-130 mW/cm² is effective)
- Much more UVA is required with multi-wavelength LED approach
 - 4-100x depending on UVB exposure
- Inadequate UVA resulted in loss of adhesion and coating to flake off during scratch test

THANK YOU FOR YOUR ATTENTION

